Topology TMS Exam (JUSTIFY YOUR ANSWERS)

- 1- (4+14+7 pts) Let X be a topological space and let A be a subset of X. Let A° and \overline{A} denote the interior and the closure of A respectively.
 - (i) Give the definition of the boundary ∂A of A.
 - (ii) Show that $\partial \overline{A} \subset \partial A$ and $\partial A^{\circ} \subset \partial A$.
 - (iii) Give an example where the sets $\partial \overline{A}$, ∂A and ∂A° are all different.

2- (4+10+11 pts) Let X be a Hausdorff space.

(i) Give the definition of a compact subset of X.

(ii) Show that if $A \subseteq X$ is a compact subset and if $x \in X - A$, then there are open sets U and V such that $A \subseteq U$ and $x \in V$ and $U \cap V = \emptyset$. (iii) Show that if A and B are <u>disjoint</u> compact subsets of X, then there are there are open sets P and \overline{Q} such that $A \subseteq P$ and $B \in Q$ and $P \cap Q = \emptyset$.

3- (4+10+11 pts) (i) What does it mean to say that a topological space X is path-connected?

(ii) Show that $f: X \to Y$ is a continuous surjective map and if X is path–connected, then Y is path–connected.

(iii) Prove that $S^n = \{x = (x_0, x_1, \dots, x_n) \in \mathbb{R}^{n+1} | x_0^2 + x_1^2 + \dots + x_n^2 = 1\}$ as a subspace of \mathbb{R}^{n+1} is path–connected.

4- (13+12 pts) Let X be a topological space and let $f, g : X \to \mathbb{R}$ be continuous functions.

(i) Show that the set $A = \{x \in X \mid f(x) \le g(x)\}$ is closed in X.

(ii) Show that the function $h: X \to \mathbb{R}$ defined by

$$h(x) = \max\{f(x), g(x)\}\$$

is continuous.