METU - Mathematics Department Graduate Preliminary Exam

Topology

Duration: 3 hours Fall 2005

- 1. Let (X, d_x) , (Y, d_Y) be two metric spaces and let $f: X \to Y$ be continuous in the usual ϵ , δ definition.
 - a) Prove that for every open set $V \subset Y$, the set $f^{-1}(V)$ is open in X.
 - b) Suppose that X is compact and $y_0 \in Y f(X)$. Prove that there is an open neighborhood V of f(X) and a positive number r such that $V \cap B(y_0; r) = \emptyset$. Here, $B(y_0; r) = \{y \in Y : d_Y(y, y_0) < r\}$.
- 2. Let X be an infinite set with the finite complement topology (ie. the collection of open sets is $\tau = \{A : X A \text{ is finite, or } A = \emptyset\}$).
 - a) Prove that every subset of X is compact.
 - **b)** Prove that X is T_1 (ie. For every $x, y \in X$ with $x \neq y$, there are open sets U, V such that $x \in U V$ and $y \in V U$).
 - Is X Hausdorff? Is X metrizable?
 - c) If $X = \mathbb{R}$, find the closures and interiors of $(0, 1], [2, 3], \mathbb{Z}$.
- 3. a) Consider the following subsets of \mathbb{R}^2 :

$$X = \{(\pm \frac{1}{n}, y) : n \ge 1, 0 \le y \le 1\} \cup \{(x, 0) : |x| \le 1\} \cup \{(0, y) : 0 \le y \le 1\},$$

$$Y = \{(\pm \frac{1}{n}, y) : n \ge 1, 0 \le y \le 1\} \cup \{(x, 0) : |x| \le 1\} \cup \{(-2, y) : 0 \le y \le 1\}$$

Show that in the topology induced from \mathbb{R}^2 ,

- (i) X is connected but not locally connected, and
- (ii) Y is locally connected.

b) Show that the image of a locally connected set under a continuous map is not necessarily locally connected.

Hint: Consider the map
$$f: Y \to X$$
, $f(a,b) = \begin{cases} (a,b) & \text{if } a \neq -2 \\ (0,b) & \text{if } a = -2. \end{cases}$

- c) Show that a compact Hausdorff space is locally connected if and only if every open cover of it can be refined by a cover consisting of a finite number of connected spaces.
- 4. a) Show that a topological space X is regular if and only if for each $x \in X$ and any neighborhood U of x, there is a closed neighborhood V of x such that $V \subset U$.
 - b) Let X be a regular space and let \mathcal{D} be the family of all subsets of the form $\{x\}$ where $\{x\}$ denotes the closure of the point $x \in X$. Show that \mathcal{D} is a partition of X.
 - c) Show that, in the quotient topology induced by the projection $p: X \to \mathcal{D}, \ p(x) = \overline{\{x\}}, \ \mathcal{D}$ is a regular Hausdorff space.