GRADUATE PRELIMINARY EXAMINATION GENERAL TOPOLOGY

Duration: 3 hours Fall 2009

- 1. a) Let A be a subspace of X and U is an open subset of X. Show that if $A \cap U$ is closed in U then $U \cap A = U \cap \overline{A}$ where $\overline{A} = Cl_XA$.
 - b) Suppose that a subspace A of a topological space has the property that each of its points has a neighborhood U such that $A \cap U$ is closed in U. Show that A is open in \overline{A} , where \overline{A} is closure of A in X as in part(a).
 - c) Show that if A has the property given in part(b), then A can be written as a the intersection of an open and a closed set.
- 2. Let X be a compact connected Hausdoff space and $f: X \to X$ a continuous open map. Show that f is onto.
- 3. Let X be a space which is not Lindelöf. Adjoin a point p to X to obtain a new space \tilde{X} whose the neighborhoods of p are the sets of the form $\{p\} \cup E$ where E an open subset of X whose complement is Lindelöf. Call this new space \tilde{X} .
 - a) Show that X is a dense subspace of \tilde{X} .
 - b) Show that \tilde{X} is Lindelöf.
- 4. Let $X = \{x | x : \mathbb{N} \to \mathbb{R}\}$ with the box topology (the topology which has a base $B = \{\Pi_{i \in \mathbb{N}} O_i | O_i \text{ open in } \mathbb{R} \text{ for } i \in \mathbb{N}\}.$
 - a) Show that $X \times X \to X$ given by $(x,y) \to x + y$ is continuous.
 - b) Show that $\mathbb{R} \times \mathbb{X} \to \mathbb{X}$ given by $(r, x) \to rx$ is discontinuous.
 - c) Describe the path component of O = (0).