Topology TMS EXAM September 19, 2014

Duration: 3 hrs.

1. Let \mathbb{Q} denote the set of rational numbers considered as a subspace of \mathbb{R} , the space of real numbers.

- (a) Show that one-point subsets are not open in \mathbb{Q} .
- (b) Show that \mathbb{Q} is totally disconnected (i.e. the only connected subsets are one-point sets $\{q\}, q \in \mathbb{Q}$).
- (c) Prove that \mathbb{Q} is not locally connected.
- **2.** Let $\{X_{\alpha} | \alpha \in \Lambda\}$ be a family of spaces and let $A_{\alpha} \subset X_{\alpha}$ for each $\alpha \in \Lambda$.
- (a) Show that if A_{α} is closed in X_{α} , then $\prod A_{\alpha}$ is closed in $\prod X_{\alpha}$. Why does this imply that $\overline{\prod A_{\alpha}} \subset \prod \overline{A_{\alpha}}$?
- (**b**) Show that $\prod \overline{A_{\alpha}} \subset \overline{\prod A_{\alpha}}$

3.

- (a) State Urysohn Lemma.
- (b) Show that a connected normal space having more than one point is uncountable.
- **4.** Let X be a compact Hausdorff space and $A \subset X$ be a closed subset.
- (a) Show that $X \setminus A$ is a locally compact Hausdorff space.
- (b) Show that the one-point compactification $(X \setminus A)^*$ of the space $X \setminus A$ is homeomorphic to the quotient space X/A. (Recall that X/A is the quotient space X/\sim where the equivalence classes are $\{A\}$ and the single point sets.)