METU - Mathematics Department Graduate Preliminary Exam-Spring 2008

Topology

1. Consider the real line \mathbb{R} with the usual topology. Let \sim be the equivalence relation defined by

 $x \sim y$ if and only if $x - y \in \mathbb{Q}$.

Show that the quotient space \mathbb{R}/\sim has uncountable number of elements and that its topology is trivial.

- 2. A discrete valued map on a topological space X is a continuous map $X \to D$ into a discrete topological space D. Show that
 - a) X is connected if and only if every discrete valued map on X is constant.

b) the statement "d(p) =d(q) for every discrete valued map d on X" defines an equivalence relation on X and that the corresponding equivalence classes are closed subsets of X.

3. Let X and Y be two topological spaces and let $X \times Y$ be given the product topology.

a) Suppose K is a compact subset of X and $A \subset X \times Y$ is an open set such that for some $y \in Y$, $K \times \{y\} \subset A$. Show that y has a neighborhood $U \subset Y$ such that $K \times U \subset A$.

b) (i) Suppose X is compact. Prove that the projection $\pi: X \times Y \to Y$ is a closed map.

(ii) Give an example to show that in (i) the *compactness* assumption is essential.

- 4. Let X be a Hausdorff topological space and let $X^* = X \cup \{\infty\}$, where ∞ is an ideal point not in X. Consider the following collection Ω^* of subsets of X^*
 - (i) open sets in X
 - (ii) sets of the form $X^* S$ where S is a compact subset of X.

Prove the following statements for the topological space (X^*, Ω^*) (do not prove that Ω^* defines a topology on X^*).

a) (X^*, Ω^*) is compact.

b) If X is locally compact, then X^* is Hausdorff.

c) A continuous map $f: X \to Y$ between Hausdorff topological spaces extends to a map $f^*: X^* \to Y^*$, which is continuous if f is proper (that is, the inverse image under f of every compact subset of Y is compact).

d) If X, and Y are locally compact Hausdorff spaces and if $f : X \to Y$ is proper and continuous, then f is a closed map.