METU MATHEMATICS DEPARTMENT TMS EXAM IN TOPOLOGY

FEBRUARY 18, 2016

1. Parts are unrelated!

a) Construct a topology au on the interval [0,1) so that it becomes homeomorphic to the unit circle

 $S^1 = \{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 = 1\}$

with the topology inherited from the standard topology of \mathbb{R}^2 . Find a homeomorphism $f:[0,1)\to S^1$, where [0,1) has the topology τ .

Show that any bijection $\phi:[0,1]\to[0,1)$ is discontinuous at infinitely many points, where both interval are equipped with the standard topology inherited from the real line.

c) Find a homeomorphism $\psi:[0,\infty)\to(0,1]$.

2. A continuous map between two topological spaces is called proper if the preimage of any compact set is compact. Parts are unrelated!

 \mathbb{Z} a) Is there a proper map $f: \mathbb{R} \to [0,1]$, where [0,1] has its standard topology? Prove your

b) Show that $g: \mathbb{R} \to \mathbb{R}, \ g(x) = x^2$, is proper.

(x) Let $h: X \to Y$ be a continuous map of Hausdorff topological spaces, where X is compact. Show that h is proper.

 $l \supset a$) Define an equivalence relation on \mathbb{R}^2 (equipped with the standard topology) as follows: $(x_0, y_0) \sim_1 (x_1, y_1) \iff x_0^2 + y_0 = x_1^2 + y_1$.

Show that the quotient space \mathbb{R}^2/\sim_1 is homeomorphic to the real line with its standard topology.

b) Instead of the above equivalence relation \sim_1 in Part (a) consider the relation \sim_2 defined

 $(x_0,y_0)\sim_2(x_1,y_1) \Leftrightarrow x_0^2+y_0^2=x_1^2+y_1^2 \ .$ Is the quotient space \mathbb{R}^2/\sim_2 homeomorphic to \mathbb{R}^2/\sim_1 ? Prove your answer!

4. Let (X,d) be a metric space. A function $f:X\to X$ is called an isometry if d(x,y)= $d(f(x), f(y)), \text{ for all } x, y \in X.$

a) Prove that if (X,d) is compact and connected then any isometry $f:X\to X$ is a homeomorphism.

 \bigcap b) Prove that any isometry $f: \mathbb{R} \to \mathbb{R}$ is a homeomorphism, where the real line has its standard absolute value metric.

(c) Find an isometry $f:[0,\infty)\to[0,\infty)$, which is not a homeomorphism.