Topology TMS EXAM February 16, 2017

Duration: 3 hr.

- 1. a) Show that every subspace of a second countable space is Lindelöf.
- b) Show that any base for the open sets in a second countable space has a countable subfamily which is a base.
- 2. Show that continuous Hausdorff image of a compact locally connected space is compact and locally connected.
- 3. a) Define a (topological) imbedding.
- b) Let X be a compact space, Y be a Hausdorff space and $g: X \to Y$ be continuous one-to-one map. Show that g is a topological imbedding.
- c) Let X and Y be two arbitrary spaces and $f: X \to Y$ be a continuous map. Show that the map $F: X \to X \times Y$ which is given by F(x) = (x, f(x)) is a topological imbedding.
- 4. Let X be a set and $\{(X_{\alpha}, \tau_{\alpha})\}|\alpha \in \Lambda$ be a collection of spaces. For each α , let $f_{\alpha}: X \to X_{\alpha}$ be a map. Recall that the weak topology on X induced by the collection $\{f_{\alpha}|\alpha \in \Lambda\}$ is the topology τ on X for which the sets $f_{\alpha}^{-1}(U_{\alpha})$ for $\alpha \in \Lambda$ and U_{α} is open in X_{α} , form a subbase.
- a) Show that τ is the smallest topology on X making each f_{α} continuous.
- b) Let $\{\tau_{\alpha} | \alpha \in \Lambda\}$ be a family of topologies on a fixed set X and denote by X_{α} the space consisting of the set X with the topology τ_{α} . Denote the identity function from X to the space X_{α} by i_{α} . Let τ denote the weak topology induced on X by the collection $\{i_{\alpha} | \alpha \in \Lambda\}$. Exhibit a homeomorphism F from X to the diagonal Δ in the product space $\prod X_{\alpha}$ and verify that it is indeed a homeomorphism. (Note: $\Delta = \{x \in \prod X_{\alpha} | x_{\alpha} = x_{\beta} \text{ for all } \alpha, \beta\}$.)