Name:

Topology Feb 2018

- 1. Consider the set \mathbb{R} of real numbers with the topology $\tau = \{(a, \infty) : a \in \mathbb{R}\} \cup \{\emptyset, \mathbb{R}\}.$
 - (a) Determine whether $(-\infty, 0)$ and (0, 3) are compact.
 - (b) Find the closure and the interior of the set A = [-1, 1].
 - (c) Let $x_n = 2$ for all $n = 1, 2, 3, \ldots$ Find all limits of the sequence (x_n) .
- 2. Prove or disprove the followings:
 - (a) Every quotient of a Hausdorff space is Hausdorff.
 - (b) Every quotient of a path-connected space is path-connected.
- 3. Let X and Y be two topological spaces, $x_0 \in X$ and let W be a (open) neighborhood of $x_0 \times Y$ in $X \times Y$.
 - (a) Prove that if Y is compact, then there is a neighborhood N of x_0 in X such that $N \times Y \subset W$.
 - (b) Show that the conclusion of (a) may not hold if Y is not compact.
- **4.** Let X and Y be two topological spaces and $f, g: X \to Y$ be continuous functions. Suppose that Y is Hausdorff and that there exists a dense subset D of X such that f(d) = g(d) for all $d \in D$. Prove that f(x) = g(x) for all $x \in X$