Preliminary Exam - February 2025 Topology

1) Let $f, g: X \to Y$ be two continuous functions and $h: X \to Y$ be defined by

$$h(x) = \begin{cases} f(x) & x \in A \\ g(x) & x \in X \setminus A \end{cases}$$

where Y is T_2 (Hausdorff) and $A \subseteq Y$ with $p \in bd(A)$ (boundary of A).

- a) Show that the subset $\{x|f(x) = g(x)\}$ of Y is closed.
- b) Show that h is continuous at p if and only if f(p) = g(p).
- c) Describe the subset $\{x|h \text{ is continuous at } x\}$ of X.
- 2) Let X be a connected, compact Hausdorff (T_2) space

a) Show that the subset $Q(p) = \{O | p \in O, O \text{ is open and closed subset of } X\}$ is connected.

b) Let $p \in O$ and $C(p, O) = U \{ C | p \in C, C \subseteq O, C \text{ is connected} \}$

where O open subset of X and $O \neq X$, Show that $\overline{C(p,O)} \bigcap bdO \neq \emptyset$ (closure of C(p,O)).

- 3) Let X be a compact space and \leq be a partial order on X such that $\{(x, y) | x \leq y\}$ is closed subset of $X \times X$
 - a) Show that the subset $F(q) = \{p | q \le p\}$ is closed for $q \in X$.
 - b) Let A be closed subset of X such that for any $x, y \in A$ there is $z \in A$ such that $x \leq z, y \leq z$. Show that A has $\leq -$ greatest element.
- 4) Let O be an open subset of a product space $X \times Y$. Show that $P_X(O)$ is an open subset of X where $P_X(p,q) = p$ for each $(p,q) \in X \times Y$.
- 5) Let f : X → Y, g : Y → Z be functions such that f is continuous surjection and the composition gof : X → Y is closed (images of closed sets are closed sets under gof). Show that g is closed.
- 6) Let X and Y be a connected (path connected) infinite topological space. Show that $X \times Y \setminus \{(p,q)\}$ is connected (path connected) for $p \in X, q \in Y$.